Tetrahedron Letters No.11, pp. 1211-1218, 1966. Pergamon Press Ltd. Printed in Great Britain.

THE CONSTITUTION OF COCHLIOBOLIN

L. Canonica, A. Fiecchi, M. Galli Kienle, A. Scala Istituto di Chimica Organica dell'Università Centro Naz. Chim. Sost. Org. Nat. del C.N.R. - Milano (Italy)

(Received 17 December 1965; in revised form 21 January 1966)

We propose the formula <u>1</u> for the cochliobolin, $C_{25}H_{36}O_4$ (MS 400), a metabolic product of Helminthosporium orizae:

<u>1</u> has m.p. 181° ; $(a)_D^{20}$ 301; UV 236, 10100; IR (CHCl₃) 3450, 2730, 1742, 1673, 1635; its NMR spectrum shows signals at 0.83 s C11-CH₃, 1.12 d(7) (DR 2.28 s), C15-CH₃, 1.37 s C3-CH₃, 1.78 broad s (DR 5.18 s) two C19-CH₃, 2.65 AB q(20) C4-H₂, 3.25 d(10) (DR 2.28 s) OH C6-H, 4.45 m (DR 1.75 d, 5.18 t) C17-H, 5.18 broad d(7) (DR 1.78 d, 4.45 s) C18-H, 7.21 t (DR 2.22 s) C8-H, 9.23 s C21-H. <u>1</u> yields a monoepoxide and an anhydrobis-2,4-dinitrophenylhydrazone m.p. 252°; in fact <u>1</u> is dehydrated in acid and alkaline medium to 3-anhydrocochlio-

1211

a) MS indicates the determination of the molecular weight by mass spectrometry; (a) were determined in chloroform; UV spectra were run in methanol (λ_{max} in me, intensities as ε); IR spectra in nujcl and γ_{max} in cm⁻¹; NMR spectra were determined in CDCl, (at 60 Mc, TMS as internal reference), chemical shifts as δ =ppm (J in cps); DR signifies a double resonance spectrum at the indicated frequency.

bolin, C₂₅H₃₄O₃; MS 382; m.p. 135°; (a)_D²⁰ 164; UV 232, 20900; IR 2700, 1695, 1675, 1640, 1620; NMR spectrum of the 3-anhydro derivative shows disappearance of the signals at 1.37, 2.65, 3.25, present in 1, while new signals at 2.09 broad a C3-CH, 3.47 d(5) C6-H, 6.11 s C4-H are observed. With LiAlH₄ <u>1</u> yields two stereoisometric triols $C_{25}H_{40}O_4$, <u>2</u> and 3: 2 (MS 404); m.p. 158-60° (uncrystallizable dibenzoate) and 3 (MS 404); m.p. 176-78° (dibenzoate m.p. 148-51°). 2 yields 1 with CrO, in pyridine and 4 with MnO_2 . 4 $C_{25}H_{38}O_4$ shows UV 240, 8000; IR 3500, 3350, 1675, 1630. 3 with Cro, in pyridine or with MnO₂ yields 5 C₂₅H₃₆O₄; MS 400; m.p. 182-4°; UV 227, 10050; IR (CHCl₃) 3700, 3500, 1750, 1685; NMR spectrum of 5 shows disappearance of the signals at 1.37, 1.78, 2.65, 3.25, 7.21, 9.23 present in 1 while new signals at 1.25 s C3-CH₂, 1.5 OH, 1.70 broad s two C19-CH₂, 3.56 m C6-H, 4.9 m C5-H, 7.0 m C8-H are observed. 5 yields 3 with LiAlH₄. On hydrogenation 5 yields 6, C25H4004; MS 404; m.p. 126°; IR 3510, 1740; MMR spectrum of 6 shows disappearance of the signals at 1.70, 3.56, 4.45, 4.9, 5.18, 7.0 present in 5 while new signals at 0.89 d(6) two C19-CH₂, 3.8 m C17-H, 5.07 m C5-H are observed. These results are in agreement with the following scheme:

On hydrogenation 1 yields 7, $0_{25}H_{40}O_4$; MS 404; m.p. 156-7°; IR (CHCl₂) 3340, 3110, 1740, 1663; NMR spectrum of <u>7</u> shows disappearance of the signals at 1.78, 2.65, 3.25, 4.45, 5.18, 7.21, 9.23 present in 1, while new signals at 0.91 d(7) two C19-CH₂, 2.52 B C4-H₂, 2.9 d(10) C6-H, 3.76 m C17-H, 4.8 broad s OH, 6.3 m C21-H, 8.63 m OH are observed. 7 yields a mono-4-nitrobenzoate C32H43NO7; m.p. 132-5° which shows two signals at 3.38 d(7) and 7.18 broad s in its NMR spectrum (respectively at 2.9 and 6.3 in $\underline{7}$). With acids such a derivative yields an isomer m.p. 185-7° which shows two signals at 3.6 d(12) and 7.42 s. Both the 4-nitrobenzoates yield the 3-anhydroderivatives with acids. With LiAlH, 7 yields two isomeric hemiacetals, which yield 6 with Cr0, in pyridine. With 2,3-dichloro-5,6-dicyanobenzoquinone 7 yields 8, $C_{2c}H_{20}O_4$; the UV spectrum of that is identical to that of 1 and the IR spectrum differs only in the fingerprint region; NMR spectrum of 7 shows disappearance of the signals at 1.78. 4.45, 5.18 present in 1 while new signals at 0.92 d(6) two C19-CH, and 3.74 m C17-H are observed. Owing to these reasons we suggest the tentative formula 7. In this particular case the aldehyde group is stabilized in enol form by steric influences; the spect oscopic properties of 7 suggest that the C3-OH is involved in this stabilization through a hydrogen bond.

With 0, on Pd-C 7 yields a peroxide having the tentative for-

mula 9 $C_{25}H_{40}O_6$ (MS: m/e = 374 = P - 62); m.p. 115°; IR 3500, 3450; NMR spectrum of 9 shows disappearance of the signals at 1.37, 2.52, 2.9, 4.8, 6.3, 8.63 present in 1 and 7 while new signals at 1.24 s C3-CH₃, 3.27 d(5) C6-H, 4.02 d(13.4) C21-OH, 5.06 d(13.4) C21-H, 5.88 OH are observed.

In fact with SO_2 (with neither SO_3^- nor HSO_3^-) 9 yields 10 quickly; by-products were observed, but no H_2SO_4 was formed. 10 C₂₅H₃₈O₅, has m.p. 120-2°; UV 290, 9600 (in alkali 313, 15500); IR 1720, 1650, 1610, 1190; NER spectrum of 10 shows signals at 0.83 s C11-CH3, 0.98 d(7) C15-CH3 and two C19-CH3, 1.62 B C3-CH₃, 2.8 s C4-H₂, 3.04 m C2-H, 3.86 m C17-H, 8.05 s C21-H. By saponification, 10 yields formic acid and 11 C₂₄H₃₈C₄; MS 390; m.p. 85-96°; UV 290, 9600 (in alkali 313, 17700); IR (CHCl₃) 3620, 3430, 1750, 1660, 1610; NMR spectrum of 11 shows disappearance of the signals at 1.62, 2.8, 8.05 present in 10 while signals at 1.38 s C3-CH, 2.44 s C4-H₂ are observed. With hydrazine <u>11</u> yields a pyrazole C₂₄H₃₈N₂O₂; MS 386; m.p. 109-112°; UV 226, 6730 (in acidic medium 233, 3500). By deformylation of 10 or dehydration of <u>11</u> we obtain <u>12</u> $C_{24}H_{36}O_3$; m.p. 102-4°; UV 245, 8140 - 310, 5500 (in alkaline medium 335, 9350); NMR spectrum of <u>12</u> shows disappearance of the signals at 1.62, 2.8, 3.04, 8.05 present in 10 while new signals at 2.09 s C3-CH₃, 3.14 m

C2-H, 6.02 s C4-H are observed. <u>11</u> is also obtained from <u>7</u> with 0_2 and FeCl₃ and from <u>9</u> with FeCl₃. Owing to these results we can explain this reaction as follows:

With one mole of HIO_4 9 yields quantitatively formic acid and a monocarboxylic acid 13 $C_{24}H_{38}O_5$; m.p. 162-5° which yields a methyl ester 14 $C_{25}H_{40}O_5$; MS 420; b.p. $170^{\circ}/10^{-4}$ Torr; IR 1760, 1740; NMR spectrum of 14 shows signals at 0.8 s C11-CH₃, 0.88 d(6) two C19-CH₃, 0.99 d(7) C15-CH₃, 1.37 s C3-CH₃, 2.7 s C4-H₂, 2.8 m C2-H and C6-H, 3.68 s CH₃ ester, 3.87 m C17-H. Its mass spectrum shows a peak at m/e = 347 = P - CH₂COOCH₃. From the above data we can explain the reaction with HIO₄ as shown in the scheme at the next page. In alkaline medium 9 yields the acid 15 $C_{24}H_{38}O_5$; m.p. 214-7°; physical properties of 15 (and of its methyl ester 16 $C_{25}H_{40}O_5$ b.p. 170°/10⁻⁴Torr) are very similar to the 13 and 14 ones.

<u>15</u> is also obtained from <u>11</u> with H_2O_2 in acetic acid. We explain the reaction in this manner:

With sodium methoxide in methanol <u>14</u> and <u>16</u> yield a mixture of two dicarboxylic mono- a,β -insaturated acids C₂₄H₃₈O₅; m.p. 80-90°; UV 225, 11700.

On hydrogenation <u>3</u> yields <u>17</u> $C_{25}H_{44}O_3$; MS 392; m.p. 160-3°; IR 3570, 3470, 3430; NMR spectrum shows signals at 0.8 d(6) C15-CH₃, 0.87 s C11-CH₃, 0.88 d(6) two C19-CH₃, 1.32 s C3-CH₃, 1.55 30H, 2.05 s C7-CH₃, 3.18 m C6-H, 4.45 m C5-H, 6.65 m C8-H. Its mass spectrum shows the main peak m/e = 225 * P - $-C_8H_{17} - 3H_2O$, which suggests the presence of a saturated aliphatic chain C_8H_{17} . All the other derivatives of <u>1</u> we investigated by mass spectrometry have no significant peaks at m/e = P - $C_8H_{17} - nH_2O$, but the most abundant peak is at $m/e = 165 = C_{11}H_{17}^{0}$ for the derivatives having an isopropylidene group and $m/e = 167 = C_{11}H_{19}^{0}$, <u>18</u>, for ones having an isopropylic group.

Owing to these results we suggest that on hydrogenation of $\underline{3}$ the ether bridge between C14 and C17 was cleaved the Δ_{18} hydrogenated and the C21-H₂OH group hydrogenolyzed to form a methyl group.

With perbenzoic acid, acid hydrolysis and $\text{HIO}_4 \ \underline{1}$ yields acetone; with $\text{HNO}_3 \ \underline{1}$ gives $\underline{19}$ and all its nor-derivatives; $\underline{19}$ can be also obtained from $\underline{7}$ with the lactone $\underline{20}$; $\underline{17}$ yields $\underline{19}$, all its nor-derivatives and $\underline{21}$. $\underline{19}$, $\underline{20}$, $\underline{21}$, show IR, NMR MS spectra identical to synthetized products of unequivocal structure. With $\text{HNO}_3 \ \underline{7}$ does not yield acids having a long)r chain than $\underline{19}$; this result suggests that in the original structure the quaternary methyl group, appearing in $\underline{19}$, must be separated from the $\Delta_{\ \underline{7}}$ by a trisubstituted carbon atom. Therefore, for cochliobolin the constitutions $\underline{1}$ or $\underline{22}$ are possible only.

We propose the formula 1 for cochliobolin since such an ion

as <u>18</u>, occuring in its mass spectrum, cannot be easily explained according to <u>22</u>. Recently Nozoe et al.² deduced for ophiobolin the structure <u>1</u>, including the absolute configuration by X-ray crystallographic analysis of its bromomethoxy derivative <u>23</u>. We have observed that physical constants of cochliobolin and of its bromomethoxy derivative are very similar with the reported constants of ophiobolin and of its bromomethoxy derivative² and we agree with Nozoe et al. in suspecting the identity of cochliobolin with ophiobolin.

<u>Acknowledgement</u>. - We are very grateful to drs. G. Nencini and T. Salvatori of Laboratori Riuniti SNAM for their decisive interpretations of mass spectra.

REFERENCES

- 1. M. Orsenigo, Phytopatol. 2. 29, 189 (1957)
- S. Nozce, M. Morisaki, K. Tsuda, Y. Iitaka, N. Takahashi,
 S. Tamura, K. Ishibashi, M. Shirasaka, <u>J. Am. Chem. Soc.</u> 87, 4968 (1965)